
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2019

Random sampling in Apache Hive Random sampling in Apache Hive

Sai Sree Parvathaneni
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Parvathaneni, Sai Sree, "Random sampling in Apache Hive" (2019). Graduate Theses and Dissertations.
17765.
https://lib.dr.iastate.edu/etd/17765

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and
Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/etd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F17765&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F17765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/17765?utm_source=lib.dr.iastate.edu%2Fetd%2F17765&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Random sampling in Apache Hive

by

SaiSree Parvathaneni

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering (Software Systems)

Program of Study Committee:
Srikanta Tirthapura, Major Professor

Goce Trajcevski
Mai Zheng

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this thesis. The Graduate College will

ensure this thesis is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2019

Copyright c© SaiSree Parvathaneni, 2019. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my family and friends without whose support I would not

have been able to complete this work.

www.manaraa.com

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

CHAPTER 1. RANDOM SAMPLING . 1
1.1 Introduction . 1
1.2 Simple Random Sampling without Replacement . 1
1.3 Simple Random Sampling with Replacement . 1
1.4 Bernoulli Sampling . 2

CHAPTER 2. APACHE HIVE . 3
2.1 Hive Architecture . 3

2.1.1 Partitioning in Hive . 3
2.1.2 Bucketing in Hive . 4

CHAPTER 3. REVIEW OF LITERATURE . 6
3.1 Simple Random Sampling without Replacement in RDBMS 6
3.2 Bernoulli Sampling in RDBMS . 6
3.3 Types of Sampling in Hive . 7

3.3.1 Random Sampling . 7
3.3.2 Bucketing Sampling . 7
3.3.3 Block Sampling . 8

CHAPTER 4. ALGORITHMS AND ANALYSIS . 9
4.1 Introduction . 9
4.2 Simple Random Sampling using Sorting . 9
4.3 Random Sampling using Bernoulli’s Sampling . 10
4.4 Our Algorithm: Random Sampling using Bucketing 10

CHAPTER 5. EXPERIMENT AND RESULTS . 13
5.1 Bucketing Algorithm On Different Table Sizes . 13
5.2 Simple Random Sampling using Sorting . 15
5.3 Bernoulli Sampling . 16
5.4 Comparing Bucketing Sampling, Sorting and Bernoulli Sampling 17

www.manaraa.com

iv

CHAPTER 6. VERIFICATION OF ACCURACY OF ALGORITHM 21
6.1 Verify by Dividing The Data . 21
6.2 Verify Using Query Approximate Sampling . 21

CHAPTER 7. CONCLUSION AND FUTURE WORK . 24

BIBLIOGRAPHY . 25

APPENDIX. STATISTICAL RESULTS . 26

www.manaraa.com

v

LIST OF TABLES

Page
Table 5.1 Table shows time taken to execute computeBucketedTable(T, b) algorithm,

b = 16 . 14
Table 6.1 Table shows average standard deviation of count of rows falling into 100

equal parts of 1 million rows. 22

www.manaraa.com

vi

LIST OF FIGURES

Page
Figure 2.1 Hadoop HDFS, MapReduce and Hive . 4
Figure 2.2 Sample data in StudentDetails table divided into partitions and buckets. . . 5
Figure 4.1 ComputeBucketedTable algorithm . 11
Figure 5.1 Comparison of time of processing and sample size for different table sizes.

Each table with 64 buckets. 15
Figure 5.2 Comparison of time of processing and data size for selecting different sample

sizes. Each table with 64 buckets. 15
Figure 5.3 Comparison of time of processing and sample size for different table sizes

with 32 buckets . 16
Figure 5.4 Comparison of time of processing with different table sizes for selecting

different sample sizes.Each table data is divided into 32 buckets. 16
Figure 5.5 Comparison of time of processing and sample sizes for different table sizes

with 16 buckets . 17
Figure 5.6 Comparison of time of processing with table sizes for selecting different

sample sizes. Each table is divided into 16 buckets. 17
Figure 5.7 Comparison of time of processing to select a random sample using sorting

algorithm for different table sizes. 18
Figure 5.8 Comparison of time of processing and different table sizes for selecting dif-

ferent sample sizes using sorting algorithm on full table. 18
Figure 5.9 Comparison of time of processing and select different sample sizes for tables

with different sizes using Bernoulli’s sampling. 19
Figure 5.10 Comparison of time of processing to select samples and different table sizes

using Bernoulli’s sampling. 19
Figure 5.11 Comparison of time of processing and different sample sizes for 80M records

table with different algorithms . 19
Figure 5.12 Comparison of time of processing and different algorithms to get sample of

different sizes from table of 80M rows. 19
Figure 5.13 Comparison of time of processing and different samples sizes for a different

bucket count tables with 320M records. 20
Figure 5.14 Comparison of time of processing and table with different bucket sizes of

table with 320M records for different sample sizes. 20
Figure 6.1 Comparison of error percentage and sample sizes of tables generated using

Bernoulli sampling, random sampling using sorting and bucketing sampling
on different number of buckets . 23

Figure A1 Comparison of time of processing and different samples sizes a different
bucket count tables with 20M records. 26

Figure A2 Comparison of time of processing and table with different bucket sizes of
table with 20M records for different sample sizes. 26

www.manaraa.com

vii

Figure A3 Comparison of time of processing and different samples sizes for a different
bucket count tables with 40M records. 27

Figure A4 Comparison of time of processing and table with different bucket sizes of
table with 40M records for different sample sizes. 27

www.manaraa.com

viii

ACKNOWLEDGMENTS

I would like to thank my major professor, Dr. Srikanta Tirthapura for his guidance, support

and encouragement throughout the course of this research and the writing of this thesis. I would

like to thank my committee members, Dr. Goce Trajcevski, and Dr. Mai Zheng, for their support

and valuable feedback. Next, I would like to thank all professors who taught me classes and helped

me to gain immense knowledge in big data analytics.

I would also like to thank graduate department faculty, and staff of Electrical and Computer

Engineering department for all their help. Last, but not the least, I would like to thank all my friends

at Iowa State University for making my time at Iowa State University a memorable experience.

www.manaraa.com

ix

ABSTRACT

Data generated by humans and machines is growing at a rapid pace. Analyzing the data

provides trends, patterns, and useful insights in data which helps to make important organizational

decisions [1]. Traditional database systems have been storing and analyzing large amounts of data

for many decades. In traditional databases, handling and analyzing growing data needs lots of

resources and time. Reading and writing large data from a single disk is significantly slow. Storing

and reading from multiple disks and combining them for analyzing on a single CPU is also not

reasonable for huge amounts of data [2]. The problem of storing and analyzing large amount

of data is handled by Apache Hadoop. Apache Hadoop is a collection of open source big data

software’s that can efficiently handle storing large amounts of data by dividing data into small

blocks and replicates the data to handle system failures. Data is analyzed based on the concept

of parallel computation [3]. Hive is a data warehousing software that works on top of Hadoop file

system. It has an Hive QL interface to execute queries, and are automatically converted into map

reduce or tez or spark jobs.

“Many data mining applications and statistical analysis techniques can use a sample of the data

requested in the SQL query without compromising the results of the analysis [4]”. For aggregate

queries like AVG, SUM, count e.tc., and for analyzing trends in data, sampling gives good approx-

imation about overall data [5]. Analyzing sample population can be achieved with limited amount

of resources. There are different sampling techniques to draw sample from a population, and choice

of sampling technique depends on type of analysis we perform to achieve the goal. In this thesis,

we have investigated different techniques to perform random sampling in Hive. First, we describe

about various random sampling techniques and their advantages. Next, we try to understand Hive

and its architecture to efficiently store data on Hive. And then, we discuss about the existing

techniques to sample the data from traditional database systems as well as Hive. Last, we discuss

www.manaraa.com

x

about efficient way to get random sample data set for different data set sizes using hive architecture

and compare with existing methods.

www.manaraa.com

1

CHAPTER 1. RANDOM SAMPLING

1.1 Introduction

Data is growing exponentially in fields like social media networking, transportation, science

experiments like genome sequencing e.t.c., With growing data, data processing for ad-hoc queries

requires lots of resources and time [4]. For approximate query processing to estimate the results,

sample data plays an important role. Sample data set is used to perform analysis and draw

conclusions for the whole data [6]. Analyzing subset of a large amount data can be achieved with

significantly less amount of resources and time.“Instead of completely processing a database query

and then sampling the result, we can, in effect, interchange the sampling and query operators,

so that we sample prior to query evaluation [8].” In this paper, we focus on random sampling

technique. Next few sections describes about various random sampling techniques.

1.2 Simple Random Sampling without Replacement

Simple random sampling without replacement is a random sampling technique in which each

sample element of the population has equal chances to get included in the sample. Due to not

having any preference in selecting each element in a sample data set, this method gives good

representation of the whole data [6].

1.3 Simple Random Sampling with Replacement

Simple random sampling with replacement is a sampling technique in which each element of the

sample is chosen using simple random sampling from whole population. Once a sample element is

chosen using simple random sampling from whole population, we make a copy of the sample and

put it back in the population for selecting another sample element from whole population. Each

element is equally likely to get selected. Duplicates are allowed [6].

www.manaraa.com

2

1.4 Bernoulli Sampling

Selection of elements to make a sample is determined by applying independent Bernoulli trial

to each element of the population. Every element of the population is selected with an equal

probability. It is a fixed percent sampling. To select a sample of percent p, independent Bernoulli

trial is applied on each element, where each element is selected with a probability of p/100. No

duplicates are allowed [5]. Randomly selecting the sample with no bias made it a good sampling

technique to represent large population [9].

www.manaraa.com

3

CHAPTER 2. APACHE HIVE

Traditional databases holds large amounts of data. In traditional databases, data is processed

on a single CPU, and computations are performed one after another. As a result reading and

writing data from a single disk is a slow process. It is not resonable to read, write and process

large amounts of data like terra bytes of data from a single disk with limited resources and time

[7]. Apache Hadoop is a open source framework that can handle large data storage and parallel

processing of computations. Hadoop handles large data storage by dividing the data into small

data blocks and stores them on different nodes, and process the data in parallel using a concept

called MapReduce [3]. Map function collects the data from each data block location, and breaks

the data into key/value pairs. They are transferred to reducers for further processing of whole data

[11]. Hive is a data warehousing software, which works on top of Hadoop file system. Hive has a

SQL interface to execute Hive QL queries which are converted to map reduce jobs [12]. Figure 2.1

shows relation between HDFS, MapReduce and Hive.

2.1 Hive Architecture

HiveQL queries scans the entire data to execute a query. When data gets larger, the cost of

processing also increases. Hive supports two ways Partitioning and Bucketing to divide and manage

the data into small blocks based on column values. It helps to easily manage the data and optimize

the query processing when the data is huge.

2.1.1 Partitioning in Hive

In partitioning, data is divided into partitions based on specific predefined columns. All the

data having same column values goes to same partition. Data blocks are divided and stored in sub

directories in Hadoop Distributed File System based on the partitioned columns. When a query

www.manaraa.com

4

Figure 2.1 Hadoop HDFS, MapReduce and Hive

is executed on a specific partitioned column, hive gets the data from the partitioned sub directory

without scanning the whole table. This cuts down the resources and time for processing the query

[12]. Query1 is a sample query to create a partitioned table StudentDetails partitioned by year.

For every different value of year, a partition is created.

Query 1 : To create a partitioned table StudentDetails partitioned by year

CREATE TABLE StudentDetails(StudentID INT, Name STRING, Year STRING, Dept STRING)

PARTITIONED BY (Year STRING)

2.1.2 Bucketing in Hive

In Hive, Bucketing is another technique in which data will be divided into specific number of

blocks within a partition or table without a partition to manage large amounts of data and to

optimize the query processing. Data is divided into buckets based on specified column values [12].

Data is divided into user defined number of buckets unlike partitions where number of partitions

depends on number of different partitioned column values. Data goes into bucket based on hash

function and number of buckets specified. Query 2 is a sample query to create a table StudentDetails

partitioned by ‘year’ and data divided into 2 buckets. Figure 2.2 shows sample data divided into

buckets and partitions based on predefined partitioned and bucketed columns.

www.manaraa.com

5

Figure 2.2 Sample data in StudentDetails table divided into partitions and

buckets.

Query 2: To create a partitioned table StudentDetails partitioned by year and divided

into 2 buckets by dept

CREATE TABLE StudentDetails(StudentID INT, Name STRING, Year STRING,Dept STRING)

PARTITIONED BY (Year STRING) CLUSTERD BY (Dept) INTO 2 buckets

www.manaraa.com

6

CHAPTER 3. REVIEW OF LITERATURE

Simple random sampling operators are available in today’s database systems to draw efficient

sample datasets. First, we will discuss about the random sampling operators in traditional database

systems like relational database and data warehouses which have been used for many decades [2].

Secondly, we will discuss about types of sampling techniques available in hive using Hive QL queries.

3.1 Simple Random Sampling without Replacement in RDBMS

In relational databases like mySQL, a simple random sample can be drawn by SORT and rand()

keywords. For example, to draw a simple random sample of size 100 from StudentDetails table can

be written as

Query 3 Select 100 random rows from StudentDetails table

SELECT * FROM StudentDetails SORT BY rand() limit 100

Query 3 scans the whole data and sorts the data randomly and selects top 100 units from the sorted

data.

3.2 Bernoulli Sampling in RDBMS

To select a random sample of P percent of data can be achieved with row level Bernoulli’s

sampling using rand() keyword. For example, to draw a simple random sample of P percent of data

can be achieved from following query.

Query 4 Select P percent of rows from StudentDetails table

SELECT * FROM StudentDetails rand() <= P/100

Query 4 scans each record in the table, and assigns each record a random value between 0 and 1,

and gives out the resulting records that has assigned number less than P/100. Each record gets

www.manaraa.com

7

selected with a probability of P. This query gets approximately P percent simple random sample

of total data. It does not provide the exact number of sample size. It gives less or more samples

than P percent of data. This type of sampling works best when the data is indexed [5].

In traditional database systems, all the data is processed in series. The cost of processing a

query is more when the data is huge. To achieve a simple random sample from large amount of

data needs lots of resources and time. In order to handle large amount of data, RDBMS needs

more CPU’s or more memory to perform efficiently.

3.3 Types of Sampling in Hive

In the following sections, we discuss about three sampling techniques that are available in Hive.

3.3.1 Random Sampling

In Hive, random sampling can be done using ‘distribute’ and ‘sort by rand()’ keywords.Below

is the query that is executed to get a random sample of size 100 from table.

Query 5 Select 100 random rows from StudentDetails table in Hive

SELECT * FROM StudentDetails DISTRIBUTE BY rand() SORT BY rand() limit 100

In Query 5, ‘distribute by rand()’ keyword in the query distributes the data among mappers ran-

domly, and ‘sort by rand()’ keyword sorts the data in each reducer randomly. All the data get

sorted randomly, and the limit helps to get the sorted random sample. This query on hive does the

whole table scan [12].

3.3.2 Bucketing Sampling

Bucketing is a technique to divide the data into desired number of blocks. TABLE SAMPLE

is a clause that helps to select desired number of buckets from the available buckets, based on the

clustered column.

www.manaraa.com

8

Query 6 Select x out of y buckets clustered by colname in StudentDetails table in Hive

SELECT * FROM StudentDetails TABLESAMPLE(BUCKET x OUT OF y [ON colname])

In Query 6, column name can be any column in a table. Data will be clustered by the column

name and the elements of a table are divided into y number of buckets [12]. The cost of processing

is high for large amount of data as the table is divided into buckets in memory and gives sample

data. It is hard to assume x and y values for a specific sample size data.

3.3.3 Block Sampling

This type of sampling is used to get specific size block of data or rows of data from hive.

Query 7 Select n percent of StudentDetails table in Hive

SELECT * FROM StudentDetails TABLESAMPLE(n PERCENT)

Query 7, gets n percent of the data.There is a chance of selecting whole data in case of query failure.

This query doesn’t ensure required number of rows for sample selection, and also the data that is

drawn is top rows. It cannot achieve random sampled data of required size [12].

Query 8 Select x out of y buckets clustered by colname in StudentDetails table in Hive

SELECT * FROM StudentDetails TABLESAMPLE(n rows)

In Query 8, It draws top n rows in data block. This type of sampling doesn’t handle random

sampling [12].

www.manaraa.com

9

CHAPTER 4. ALGORITHMS AND ANALYSIS

4.1 Introduction

In chapter three, we have discussed various methods to perform sampling in RDBMS(Relational

Database Management System) and Hive. In this section, we describe different algorithms for

random sampling in Hive. First, we discuss an algorithm which sorts the whole data randomly

and selects random sample of specific size. Second, we discuss the algorithm to select the random

sample data set using Bernoulli’s Sampling. Third, we discuss our algorithm to get random sample

data set using bucketing in hive to store data for optimal query processing. From all the three

algorithms we expect an output of random sample dataset of exactly specific size.

4.2 Simple Random Sampling using Sorting

Suppose we want to draw a sample of size S from a table T. Let the total number of rows in the

whole table be n. Below is the algorithm to select a random sample of size S from table by sorting

the whole data.

Algorithm 1 SortSRS(T,S)

1. Select whole data from T

2. Distribute the data among all reducers randomly.

3. Sort the data randomly

4. Limit the selected and sorted data to S

The method described in Algorithm 1 scans the whole data, distribute the data among all

the reducers randomly, and sorts the data randomly in each reducer, and finally outputs required

sample size.

www.manaraa.com

10

4.3 Random Sampling using Bernoulli’s Sampling

The following section describes the algorithm to get a random sample of exactly specific size

using Bernoulli’s Sampling. Applying Bernoulli sampling on each row selects a P percent of data,

by selecting each row with a equal probability of P/100 [5].The sample size achieved is approximate,

and sometimes it may be less than required sample size [5]. To achieve required sample size, we

select 5 percent more data expecting it to get sample of atleast required size, randomly sort the

data, and select required samples. Suppose we want to draw a sample of size s from a table T

with row count of n. Since the data is selected at random, it always give a good random sample.

Algorithm 2 describes to select a random sample of size ‘s’ from table using Bernoulli sampling.

Algorithm 2 BerSRS(T,s)

1. count← 0

2. count = (s / n)+0.05

3. Select data from T, where rand() ≤ count

4. Sort the selected data randomly

5. Output the data with limit s

Query executed for Algorithm 2 scans the whole table, assigns a random value between 0 and 1

to each row, and selects (s/n)+0.05 probability of data, and then sorts the data to get the sample

of required size s.

4.4 Our Algorithm: Random Sampling using Bucketing

In Algorithm 1, entire data in table is sorted to get random sample, which drastically reduces

the performance of executing the queries when the data is large. Algorithm 2 performs better than

Algorithm 1, because of sorting the approximate sample size rows instead of sorting the whole data.

Both algorithms need additional resources when the data and sample sizes are large. In order to

avoid whole table scan while sampling, we divide the whole data in table T into buckets(nothing

but data blocks) in a new table Tb, where data is randomly shuffled and stored. Hive inbuilt

queries can only clusters the data by column name in the table and divides the data into specific

number of buckets. So, we have created hive tables Tb with buckets clustered by random number

www.manaraa.com

11

Figure 4.1 ComputeBucketedTable algorithm

in a column which was a randomly generated value between 0 to 1, and is generated using keyword

‘rand()’. Data is divided into buckets based on hash value of clustered column and number of

buckets. Bucketing in hive tries to divide the data into approximately equal bucket size. As every

value in the column is different, the data is distributed randomly among all the buckets. Now the

newly created table with buckets has randomly selected data almost equally distributed among

specific number of buckets. Let T be table on Hive. We consider a table Tb, with data divided into

b number of buckets clustered by a random value. Let i be the bucket number. All the meta data

about b number of buckets and count of rows in each bucket bi in table Tb is stored in a separate

table Tm. We can remove the original table T to save space, we can use the Tb as a full table with

an additional random column value. Let the number of samples that are required from table be s.

Algorithm 3 ComputeBucketedTable(T,b)

1. Select data and add additional column randnum using keyword rand()

2. Create table Tb with b buckets clustered by randnum column. New table Tb has data from

table T randomly distributed into b buckets.

3. Output: Create a metadata table Tm that has count of elements in each bucket.

www.manaraa.com

12

Algorithm 4 BucketingSRS(Tb,s)

Require: s ≥ 0

Initialize: count← 0, selectedbuckets← {},lastbucket← 0,limit← 0, S ← {}, L← {}
while count<s do

Randomly select a bucket bi without replacement, i 6= selectedbuckets

Find the count of the number of rows in selected bucket bi from table Tm

count← count+ sizeof bi
if s ≥ count + sizeofbi then

selectedbuckets← selectedbuckets ∪ i

S ← S∪ elements of bi
else

limit = s− count

count← count + limit

L← randomly select limit elements from bi (Bernoulli sampling is used for efficiency)

end if

end while

Return: S ∪ L

www.manaraa.com

13

CHAPTER 5. EXPERIMENT AND RESULTS

This chapter describes about the experiments we performed to analyze the time of processing

for selecting different random sample sizes from different table sizes using algorithms that are

discussed in chapter 4. We used Hive 2.3.4 version on Hadoop 3.1.1 to perform our experiments.

We used lineitem table the largest table in TPCH Benchmark database as a dataset to carry our

experiments. TPCH is one of the industrial benchmark support systems for databases [13]. We

generated ‘lineitem‘ tables from small scale to large scale data, ranging from 1 million(128MB)

to 320 million rows (41 GB) of table data. We performed all the experiments multiple times and

calculated the average of all the time values.

5.1 Bucketing Algorithm On Different Table Sizes

In this section, we compared time of processing to draw a uniform random samples of sizes

ranging from 10 to 100M rows for different size tables using our Algorithm 4. Table 5.1 shows

the time of processing to create the 16 bucket tables using Algorithm 4, table sizes ranging from

1M to 320M. Time for creating bucketed tables increases with increase in table size and number of

buckets. Database tables T with different sizes ranging from 1 million to 320 million rows are used

to built tables Tb with 16, 32 and 64 buckets using Algorithm 3. Query 7 is a sample query that is

executed to create and load lineitem table of 1 million rows with 64 buckets, and Query 8 to draw

a sample of 10000 from table Tb created with Query7.

Query 7 Create and load lineitem table with 64 buckets from original table

CREATE TABLE IF NOT EXISTS lineitem_1m_buckets_64(l_suppkey bigint,l_quantity

double,randnum double) CLUSTERED BY (randnum) INTO 64 buckets

STORED AS SEQUENCEFILE;

INSERT OVERWRITE TABLE lineitem_1m_buckets_64 SELECT *,rand() as randnum

www.manaraa.com

14

FROM lineitem_1m

Query 8 Draw random sample of size 10000 using our bucketed algorithm

SELECT * FROM lineitem_1m_buckets_64 TABLESAMPLE(BUCKET 52 OUT OF 64)

WHERE rand() <= 0.6842762907522517 SORT BY rand() LIMIT 10000

Table 5.1 Table shows time taken to execute computeBuck-

etedTable(T, b) algorithm, b = 16

Table Size(Rows)/ Time(Min) Tb(min) Tm(min) Tb + Tm(min)

1 Million 0.57 6.74 7.31

20 Million 2.32 8.08 10.40

40 Million 3.42 7.82 11.24

80 Million 7.04 10 17.04

160 Million 12.33 12.75 25.08

320 Million 22.59 14.43 37.02

Figure 5.1 and Figure 5.2 compares the time of processing for different sample sizes, and for different

tables sizes, respectively using tables Tb of different size data with 64 buckets. Results from Figures

5.1 shows that for a specific table size data, time for selecting random samples is either constant or

steadily increasing with the number of samples selected from the table Tb. As the sample size is

increasing, the number of buckets selected from table Tb are either constant or increasing which in

turn effecting the processing time. When the sample size is achieved with same number of buckets,

then the time of processing is increasing slowly with sample size. Similarly, Figure 5.3 and Figure

www.manaraa.com

15

5.4 were generated using different size tables Tb with 32 buckets, and Figure 5.5 and Figure 5.6

were generated using different size tables Tb with 16 buckets. From Figures 5.2 , 5.4 and 5.6

for selecting specific size sample, the time of processing increases with increase in table data size.

As the table size increases, the number of elements in each bucket increases, which proportionally

increases the time taken to select samples from the bucket.

0

1

2

3

4

5

6

7

TI
M

E(
M

IN
U

TE
S)

SAMPLE SIZE(ROWS)

1M

20M

40M

80M

160M

320M

Figure 5.1 Comparison of time of pro-

cessing and sample size for

different table sizes. Each

table with 64 buckets.

0

1

2

3

4

5

6

7

1M 20M 40M 80M 160M 320M

TI
M

E(
M

IN
U

TE
S)

TABLE SIZE(ROWS)

10

50

100

1000

10000

100000

1M

10M

100M

Figure 5.2 Comparison of time of pro-

cessing and data size for

selecting different sample

sizes. Each table with 64

buckets.

5.2 Simple Random Sampling using Sorting

Simple random sampling using sorting method scans the whole data in the table to select the

elements for scanning, and sort maximum of all elements randomly in the reducers. Figure 5.7

shows the time required for processing to select random samples of different sizes ranging for 10 to

100M. Figure 5.8 shows the time of processing for random sample selection and different table sizes

ranging from 1M to 320M. It shows that time of processing increases with increase in table size and

sample size. Random sampling for sorting algorithm failed to retrieve samples after 10M for table

of size 160M rows, and for sample sizes above 1M for table of size 320M rows. Random sampling

using sorting requires more resources to achieve samples when the data is large and sample sizes

www.manaraa.com

16

0

1

2

3

4

5

6

TI
M

E(
M

IN
U

TE
S)

SAMPLE SIZE(ROWS)

1M

20M

40M

80M

160M

320M

Figure 5.3 Comparison of time of pro-

cessing and sample size for

different table sizes with 32

buckets

0

1

2

3

4

5

6

1M 20M 40M 80M 160M 320M

TI
M

E(
M

IN
U

TE
S)

TABLE SIZE(ROWS)

10

50

100

1000

10000

100000

1M

10M

100M

Figure 5.4 Comparison of time of pro-

cessing with different ta-

ble sizes for selecting differ-

ent sample sizes.Each ta-

ble data is divided into 32

buckets.

are large. Query 9 is a sample query to draw a sample of size 10000 from lineitem table using

simple random sampling using sorting algorithm.

Query 9 Draw random sample of size 10000 by simple random sampling using sorting algorithm

SELECT * FROM lineitem SORT BY rand() LIMIT 10000

5.3 Bernoulli Sampling

Sorting whole table and selecting random samples using Algorithm 1 needs more resources when

the data and sample sizes are large. Our resources are not enough to use Algorithm 1 to select

random samples from very large tables. This section shows time taken to select a random sample

using Bernoulli’s sampling using Algorithm 2 on full table. Figures 5.9 and 5.10 shows the time of

processing to select uniform random samples of data ranging from 10 to 100M from tables of sizes

ranging from 1M to 320M using Bernoulli sampling. Figure 5.9 shows that for a specific sample size,

time of processing is increasing with increase in table size. Figures 5.10 shows time of processing

www.manaraa.com

17

0

1

2

3

4

5

6

7

TI
M

E(
M

IN
U

TE
S)

SAMPLE SIZE(ROWS)

1M

20M

40M

80M

160M

320M

Figure 5.5 Comparison of time of pro-

cessing and sample sizes for

different table sizes with 16

buckets

,

0

1

2

3

4

5

6

7

1M 20M 40M 80M 160M 320M

TI
M

E(
M

IN
U

TE
S)

TABLE SIZE(ROWS)

10

50

100

1000

10000

100000

1M

10M

100M

Figure 5.6 Comparison of time of pro-

cessing with table sizes for

selecting different sample

sizes. Each table is divided

into 16 buckets.

to select the samples increases with increase in sample size. This method selects samples scanning

through the whole table to select approximate percent of samples of required size, which increases

the time of processing to select the samples for larger data sets. As the sample size increases, the

time taken to sort the approximate percent samples randomly also increases. Query 10 is a sample

query to select random samples of size 10000 from lineitem table using Bernoulli sampling.

Query 10 Draw random sample of size 10000 using Bernoulli’s sampling algorithm

SELECT * FROM lineitem WHERE rand() <=0.06

SORT BY rand() LIMIT 10000

5.4 Comparing Bucketing Sampling, Sorting and Bernoulli Sampling

In this section, we compared all the three algorithms for selecting sample of different sizes

for different table sizes obtained in above sections. Figures 5.11 and 5.12 shows the time of

processing for selecting different sample sizes using bucketing algorithm from tables of 16, 32, 64

bucket sizes, simple random sampling using sorting and Bernoulli sampling from full table of size

80M rows. It shows that time of processing to select a sample is lowest using bucketing algorithm,

www.manaraa.com

18

0

5

10

15

20

25

TI
M

E(
M

IN
U

TE
S)

SAMPLE SIZE(ROWS)

1M

20M

40M

80M

160M

320M

Figure 5.7 Comparison of time of pro-

cessing to select a random

sample using sorting algo-

rithm for different table

sizes.

,

0

5

10

15

20

25

1M 20M 40M 80M 160M 320M

TI
M

E(
M

IN
U

TE
S)

TABLE SIZE(ROWS)

10

50

100

1000

10000

100000

1M

10M

100M

Figure 5.8 Comparison of time of pro-

cessing and different table

sizes for selecting different

sample sizes using sorting

algorithm on full table.

then Bernoulli sampling and highest using sorting method. Figures 5.13 and 5.14 shows time of

processing to select different random samples for different bucket count tables of size 320M rows of

data using Bernoulli sampling and bucketing sampling. For large amount of 320M simple random

sampling using sorting failed with available resources. Figure 5.13 shows that the time taken to

select samples increases with increase in sample size using bucketing algorithm, also it is clear that

time taken by Bernoulli sampling without buckets is always higher than sampling using bucketing.

More statistical results for other table sizes are included in Appendix.

www.manaraa.com

19

0

5

10

15

20

25

30

35

40

TI
M

E(
M

IN
U

TE
S)

SAMPLE SIZE(ROWS)

1M

20M

40M

80M

160M

320M

Figure 5.9 Comparison of time of pro-

cessing and select differ-

ent sample sizes for tables

with different sizes using

Bernoulli’s sampling.

0

5

10

15

20

25

30

35

40

1M 20M 40M 80M 160M 320M

TI
M

E(
M

IN
U

TE
S)

TABLE SIZE (ROWS)

10

50

100

1000

10000

100000

1M

10M

100M

Figure 5.10 Comparison of time of

processing to select sam-

ples and different ta-

ble sizes using Bernoulli’s

sampling.

0

2

4

6

8

10

12

14

16

18

20

TI
M

E(
M

IN
)

SAMPLE SIZE (ROWS)

64 buckets

32 buckets

16 buckets

Bernoulli

Sorting

Figure 5.11 Comparison of time of

processing and different

sample sizes for 80M

records table with differ-

ent algorithms

0

2

4

6

8

10

12

14

16

18

20

64
BUCKETS

32
BUCKETS

16
BUCKETS

BERNOULLI SORTING

TI
M

E(
M

IN
U

TE
S)

10

50

100

1000

10000

100000

1M

10M

100M

Figure 5.12 Comparison of time of

processing and different

algorithms to get sample

of different sizes from ta-

ble of 80M rows.

www.manaraa.com

20

0

5

10

15

20

25

30

35

40

TI
M

E(
M

IN
U

TE
S)

SAMPLE SIZE(ROWS)

64 buckets

32 buckets

16 buckets

Bernoulli

Figure 5.13 Comparison of time of

processing and different

samples sizes for a dif-

ferent bucket count tables

with 320M records.

0

5

10

15

20

25

30

35

40

64 BUCKETS 32 BUCKETS 16 BUCKETS BERNOULLI

TI
M

E(
M

IN
U

TE
S)

TABLE

10

50

100

1000

10000

100000

1M

10M

100M

Figure 5.14 Comparison of time of

processing and table with

different bucket sizes of

table with 320M records

for different sample sizes.

www.manaraa.com

21

CHAPTER 6. VERIFICATION OF ACCURACY OF ALGORITHM

In order to verify the accuracy of randomness of samples that are selected, we created a table

T with 1 million size using ‘lineitem’ table from TPCH database. We add a new column called

row number which has unique consecutive number from 1 to size of table T. We created bucketed

tables Tb of 64, 32 and 16 buckets using T. We used Bernoulli sampling on table T, and Bucketing

sampling on Tb to achieve a sample size of 1000, 10000 and 100000.

6.1 Verify by Dividing The Data

We divided 1 million rows into 100 parts, and calculated the count of all the values that are

fallen in each part. For example, counted rows in the sample of 10000 that has rows that has number

between 0 to 10000, 10001 to 20000 e.t.c. For a good random sample, count of elements in each part

should be approximately same size. We calculated average standard deviation of count of elements

that are in each part shown in Table 6.1. For a sample size of 1000, we expect approximately

1000/100 elements fall in each part. The standard deviation of count of elements fallen in 100

equal parts is around 3.17 for samples drawn using sorting, 3.26 using Bernoulli sampling, and

2.85, 2.81, and 3.2 using bucketing algorithm. It shows that sampling using bucketing yields a

random samples which gives a good representation of the whole population.

6.2 Verify Using Query Approximate Sampling

We have performed Query 11 on the tables having 1K, 10K and 1M samples in section 6.1 to find

the approximate average value of quantity column in lineitem table of size 1M. Calculated average

error percentage of average quantity for sampled tables. Compared average error from samples

obtained by random sampling using sorting, Bernoulli sampling and sampling using bucketing.

www.manaraa.com

22

Table 6.1 Table shows average standard deviation of

count of rows falling into 100 equal parts

of 1 million rows.

Sampling Method/ Sample Size 1000 10000 100000

Sorting 3.176 9.56 29.96

Bernoulli 3.26 8.72 32

16 buckets 2.85 10.13 26

32 buckets 2.81 9.36 28.5

64 buckets 3.2 9.17 32

From Figure 6.1 it is clear that all the samples that are drawn using bucketing hold close error

percent as Bernoulli sampling and simple random sampling using sorting.

Query 11 Calculate average of each supply key group from lineitem table

SELECT l_suppkey, AVG(l_quantity) from lineitem_1m GROUP BY l_suppkey

www.manaraa.com

23

0

10

20

30

40

50

60

70

80

90

100

1000 10000 100000

Er
ro

r
Pe

rc
en

t

Bernoulli Sorting 16 buckets 32 buckets 64 buckets

Figure 6.1 Comparison of error percentage and sam-

ple sizes of tables generated using Bernoulli

sampling, random sampling using sorting

and bucketing sampling on different num-

ber of buckets

www.manaraa.com

24

CHAPTER 7. CONCLUSION AND FUTURE WORK

Our algorithm, random sampling using bucketing gives random sample. Less additional storage

is required to create a table with buckets of randomly distributed data. Comparing all three

methods, sampling using bucketing performs faster than full table scan. When the data size or

sample size is small, the difference in the time of processing to select random sample using all three

methods is not very high. Considering the time taken to create bucketed table, Bernoulli sampling

or random sampling using sorting can be used for small table sizes. We conclude that to draw

a random sample of fixed size, sampling by bucketing algorithm significantly performs well when

compared to Bernoulli’s sampling and random sampling using sorting when the data is huge. In

Algorithm 1 and Algorithm 2, in order to get sample data whole table is scanned. Algorithm 1

and Algorithm 2 needs resources proportional to the data size of table and required sample size.

Problem of increase in cost of processing with increase in data size and sample size are handled

in Algorithm 4. Algorithm 4 using bucketing sampling, the time of selection of samples is slowly

increasing with data size of table and sample size. With exponential growth in data generated

by devices and individuals, to get data insight using limited resources and time is a challenging

task. Future work can include finding efficient ways to handle different sampling techniques using

architectural properties of software’s to store the data in a logical way for optimal query processing.

www.manaraa.com

25

BIBLIOGRAPHY

[1] U. Sivaraja, M. Kamal, Z. Irani,V. Weerakkody. Critical analysis of Big Data challenges and
analytical methods.In Journal of Business Research,pp. 263-286,2017.
Available: https://www.sciencedirect.com/science/article/pii/S014829631630488X

[2] G. Trujillo, C. Kim, S. Jones, R. Garcia, J. Murray. Virtualizing Hadoop: How to Install,
Deploy, and Optimize Hadoop in a Virtualized Architecture.VMware Press, 2015.

[3] Tom White (Tom E.) Cutting, Doug. Hadoop: The definitive guide. OReilly for Higher Edu-
cation, 2010.

[4] S. Chaudhuri, R. Motwani, V. Narasayya. On Random Sampling over Joins. In ACM SIGMOD
Record,pp 263-274, 1999.

[5] Peter J. Haas, Speeding up DB2 UDB Using Sampling. IBM Almaden Research Center, 2003.
Available: http://www.almaden.ibm.com/cs/people/peterh/ idugjbig.pdf

[6] F. Olken. Random Sampling from Databases. Available:http://db.cs.berkeley.edu/papers/UCB-PhD-olken.pdf

[7] S.Tirthapura, Cpr E 419: Software Tools for Large Scale Data Analysis, 18 Jan. 2018, Iowa
State University. Microsoft PowerPointpresentation.

[8] F. Olken, D. Rotem. Random sampling from database : a survey.In Statistics and Computing,
pp. 25-42,1995.

[9] G. Depersio. What are the advantages of using a simple random sample to study a larger
population.
Available: https://www.investopedia.com/ask/answers/042915/what-are-advantages-using-
simple-random-sample-study-larger-population.asp

[10] A. Gandomi, M. Haider.Beyond the hype: Big data concepts, methods, and analytics. In
International Journal of Information Management, Volume 35, Issue 2, pp. 137-144, 2015.

[11] J. Dean, S. Ghemawat.MapReduce: Simplified Data Processing on Large Clusters. In Sixth
Symposium on Operating System Design and Implementation, pp. 137-150, 2004.

[12] Dayong Du. Apache Hive Essentials. O’Reilly Media, 2015.

[13] TPC-H is a Decision Support Benchmark.
Available:http://www.tpc.org/tpch/

www.manaraa.com

26

APPENDIX. STATISTICAL RESULTS

0

0.5

1

1.5

2

2.5

3

3.5

4

TI
M

E(
M

IN
U

TE
S)

SAMPLE SIZE(ROWS)

16 buckets

32 buckets

64 buckets

Bernoulli

Figure A1 Comparison of time of pro-

cessing and different sam-

ples sizes a different bucket

count tables with 20M

records.

0

0.5

1

1.5

2

2.5

3

3.5

4

16 BUCKETS 32 BUCKETS 64 BUCKETS BERNOULLI
TI

M
E(

M
IN

U
TE

S)

TABLE BUCKETS COUNT

10

50

100

1000

10000

100000

1M

10M

100M

Figure A2 Comparison of time of pro-

cessing and table with dif-

ferent bucket sizes of table

with 20M records for differ-

ent sample sizes.

www.manaraa.com

27

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

TI
M

E(
M

IN
U

TE
S)

SAMPLE SIZE(ROWS)

16 buckets

32 buckets

64 buckets

Bernoulli

Figure A3 Comparison of time of pro-

cessing and different sam-

ples sizes for a different

bucket count tables with

40M records.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

16 BUCKETS 32 BUCKETS 64 BUCKETS BERNOULLI

TI
M

E(
M

IN
U

TE
S)

TABLE BUCKETS COUNT

10

50

100

1000

10000

100000

1M

10M

100M

Figure A4 Comparison of time of pro-

cessing and table with dif-

ferent bucket sizes of table

with 40M records for differ-

ent sample sizes.

	Random sampling in Apache Hive
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. RANDOM SAMPLING
	1.1 Introduction
	1.2 Simple Random Sampling without Replacement
	1.3 Simple Random Sampling with Replacement
	1.4 Bernoulli Sampling

	2. APACHE HIVE
	2.1 Hive Architecture
	2.1.1 Partitioning in Hive
	2.1.2 Bucketing in Hive

	3. REVIEW OF LITERATURE
	3.1 Simple Random Sampling without Replacement in RDBMS
	3.2 Bernoulli Sampling in RDBMS
	3.3 Types of Sampling in Hive
	3.3.1 Random Sampling
	3.3.2 Bucketing Sampling
	3.3.3 Block Sampling

	4. ALGORITHMS AND ANALYSIS
	4.1 Introduction
	4.2 Simple Random Sampling using Sorting
	4.3 Random Sampling using Bernoulli's Sampling
	4.4 Our Algorithm: Random Sampling using Bucketing

	5. EXPERIMENT AND RESULTS
	5.1 Bucketing Algorithm On Different Table Sizes
	5.2 Simple Random Sampling using Sorting
	5.3 Bernoulli Sampling
	5.4 Comparing Bucketing Sampling, Sorting and Bernoulli Sampling

	6. VERIFICATION OF ACCURACY OF ALGORITHM
	6.1 Verify by Dividing The Data
	6.2 Verify Using Query Approximate Sampling

	7. CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY
	. STATISTICAL RESULTS

